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I. Introduction

NASA is developing optical links to support deep space com-
munication at data rates on the order of 100 Mbit/second.
Power efficient signaling is achieved by modulating the data
using M -ary pulse-position-modulation (PPM). For certain
lasers and detectors, the optimal PPM order is high–M ≥ 256.

We illustrate performance 0.5–1.0 dB from capacity via the
iterative decoding of a serial concatenation of a short con-
straint length convolutional code and coded PPM through a
bit interleaver. To realize the gains of the iterative decod-
ing requires likelihoods to be computed and stored for each
PPM symbol. High data rates, large values of M and large
interleavers can make the likelihood computation and storage
prohibitively expensive.

To reduce the complexity of iterative decoding, we propose
to compute and store only a subset of the channel likelihoods.
We show that this can be done while suffering a negligible loss
in performance. The complexity of implementing the forward-
backward algorithm is also reduced when partial likelihoods
are retained.

II. Partial Statistics

Suppose only P of each M observations, as well as their indices
I, are made available to the receiver. We model the constraint
as shown in Figure 1, where c,n,y are codeword, noise and
received M -vectors, respectively, φ denotes the rule for choos-
ing the P samples, φ : y → (yI ,I), I ⊂ {1, . . . , M}, |I| = P
and yI is the vector of retained samples yi, i ∈ I. The map-
ping φ reduces the dimensionality of the received information,
which we expect to severely degrade performance for small P .
However, by allowing I to be a function of the observation
y, we will see that the reduction may be implemented with
negligible loss.
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Figure 1: Constrained storage channel model
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The conditional likelihoods

pφ(y)|c(φ(y)|c) = pyI |c(yI |c)pI|c,yI (I|c, yI)
where we explicitly distinguish random variables y, c,I from
their realizations y, c, I, are a sufficient statistic for estimation
of c given φ(y). The term pyI |c is the likelihood that would
result if the input were mapped to a P dimensional constel-
lation and the term pI|c,yI is an adjustment to reflect the
outcome of the decision.

Figure 2 illustrates performance for a case with M = 256,
a 4096-bit interleaver, and 8 iterations, on an AWGN channel.
We see 0.1 dB degradation when 1/64 of the likelihoods are
kept, and negligible degradation when 1/32 are kept.
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Figure 2: Performance with partial statistics, M = 256.

In addition to storing the floating point values, we must
save the addresses of the P largest values. This yields

storage for P likelihoods

storage for M likelihoods
=

P

M

�
1 +

log2 M

f

�
,

where f is the number of bits used to represent fixed or
floating-point values.

III. Partial trellis
With partial statistics, there are only P + 1 distinct channel
likelihoods pφ(y)|c(φ(y)|c(e)). One can take advantage of this
and use a reduced complexity time-varying trellis. Let Jk be
the collection of parallel edges in the full trellis at time k with
the same channel likelihood. Form a partial trellis by replacing
the edges in Jk with a single edge with the same initial state
and terminal state. Maximum aposteriori decoding may be
executed on the partial trellis. The partial trellis will have |V|
states and no more than |V|(P + |V|) edges, where |V| is the
number of states on the full trellis.


